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Hadamard speckle contrast reduction 
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The conditon for a diffuser to produce the maximum speckle contrast reduction using the 

minimum number of distinct phase patterns is derived.  A binary realization of this 

optimum diffuser is obtained by mapping the rows or columns of a Hadamard matrix to the 

phase patterns.  The method is experimentally verified in the Grating Light Valve laser 

projection display.  
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The use of lasers in a projection display enables the creation of vibrant images with extensive 

color coverage that is unachievable by conventional sources.  One major obstacle to preserving 

the image quality, which has been well-known since the invention of visible lasers, is a 

phenomenon called speckle1.  Speckle arises when coherent light scattered from a rough surface, 

such as a screen, is detected by a square-law detector with a finite aperture, such as an observer’s 

eye.  The image on the screen appears to be quantized into areas with sizes equal to the detector 

resolution spot.  The detected spot intensity varies randomly from darkest, if contributions of the 

scattering points inside the spot interfere destructively, to brightest if they interfere 

constructively.  This spot-to-spot intensity fluctuation is referred to as speckle.    

 In a laser projection display, and in coherent imaging systems in general, the presence of 

speckle tends to mask the image information; therefore the reduction of speckle is highly 

desirable.  Following Goodman2,3, speckle contrast will be used as a measure of speckle.  It is 

defined as the ratio of the standard deviation to the mean of the speckle intensity, and its value is 

0–1.  Speckle reduction is based on averaging M independent (i.e. uncorrelated and 

noninterfering) speckle configurations within the spatial and temporal resolutions of the detector.  

Goodman2,3 has proven that, under the most favorable condition in which all the M independent 

speckle configurations have equal mean intensities, the configurations add on an intensity basis 

and the speckle contrast is reduced from 1 to M -1/2.  Fully coherent configurations, on the other 

hand, add on an amplitude basis and the speckle contrast is unreduced. 

 One common approach4,5 to generating multiple speckle configurations is to superimpose 

upon the amplitude image a time-varying diffuser, usually placed at an intermediate image plane.  

The role of the diffuser is to partition each detector-resolution spot into M cells and to assign 

each cell a phase.  M is usually taken to be as large as permitted by the imaging optics’ numerical 
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aperture (NA) because the minimum cell size ~ λ/NA.  The set of the M phase cells that covers 

one resolution spot constitutes a phase pattern.  Temporally varying the phase pattern faster than 

the detector’s temporal resolution will effectively destroy the spatial coherence of the light 

coming from the phase-cells, thereby reducing the speckle contrast.  If the maximum reduction, 

M1/2, is achieved with the minimum number of distinct phase patterns, M, the speckle reduction 

is referred to as optimum. The purpose of this Letter is to derive the condition for the optimum 

diffuser and to present a binary realization.  

 Let a square (so called for mathematical simplicity) detector-resolution spot be divided 

into M = N1N2 equal cells arranged in N1 rows and N2 columns, as shown in Fig. 1(a).  If the 

detected optical field from the ijth cell on the screen is Eij, where i = 1, 2, … , N1 and j = 1, 2, … , 

N2, the speckle intensity of the  resolution spot is 
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The fields add together on an amplitude basis, and the speckle contrast remains unreduced.  Here 

the speckle contrast is evaluated over an ensemble of resolution spots.  Suppose a diffuser that 

imprints M phase cells with phase φ a
ij is superimposed upon the original resolution spot, as 

shown in Fig. 1(b).  Suppose further that A different phase patterns are sequentially presented 

with equal duration during the detector’s integration time; then the speckle intensity becomes 
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where ha
ij = 1⋅exp(iφa

ij).  If the summation of ha
ij over all the A phase patterns satisfies 
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The averaging forces the cross-terms to vanish.  The M cells decorrelate from each other, and 

their contributions become independent.  Unlike in Eq. (1), the fields now add together on an 

intensity basis, and therefore the speckle contrast is reduced by a factor of M1/2.  This reduction is 

maximum because the upper limit of independent configurations that can be generated is M.   It 

is also clear that the number of phase patterns to produce M independent speckles cannot be 

fewer than Amin = M.  In fact, the traditional random diffuser needs a large number (theoretically 

infinite) of phase patterns to reach the M1/2 reduction4.  Therefore the set of phase patterns that 

produces the optimum speckle reduction must satisfy  
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 Next it will be shown that a family of binary phase patterns, derived from the rows or 

columns of a Hadamard matrix6, can be used to achieve Eq. (5).  Binary phase patterns have the 

advantage of simple hardware implemetation.  A Hadamard matrix of order M, denoted by H(M), 

is an M × M matrix with ±1 entries that satisfies 

   , (6) )()()( MIMMHMH T =
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where I(M) is the M × M identity matrix.  The Hadamard matrix exists for M = 2integer, and likely 

also for 4 × integer. The Hadamard matrix has the following properties: (a) any two rows or two 

columns are orthogonal, (b) permutations of rows or columns preserve Eq. (6), and (c) reversing 

the sign of a row or a column preserves Eq. (6).  For M = 2integer, the Hadamard matrices can be 

generated recursively by Sylvester construction:    
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 Let ha be an N1 × N2 phase pattern and H a Hadamard matrix of order M = N1N2.  

Consider the 1-1 mapping that takes the abth element of H, where b ≡ (i-1)N2 + j, to the ijth 

element of ha according to: 

   , (8) jNia
a
ij Hh +−=

2)1(,

 

as illustrated in Fig. 2 (the column mapping proceeds in an analogous manner).  The +1 and –1 

entries of the Hadamard matrix correspond to exp(i0) = +1 and exp(iπ) = –1 cells, respectively, 

of the phase pattern.  By use of column orthogonality property (a), Σa HabHac = Mδbc, and by the 

fact that (k-1)N2 + l ≡ c = b if and only if k = i and l = j, it follows that:   
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This proves that the set of real phase patterns {ha, a = 1, 2,…, M} satisfies the optimum speckle 

reduction condition in Eq. (5).  The result is obviously not unique, as properties (b) and (c) can 
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be used to generate different Hadamard matrix representations.  This freedom can be exploited in 

practice to create other sets of phase patterns that meet additional criteria, such as patterns that 

possess a certain symmetry or  patterns that produce specific light distribution at the pupil plane. 

Also, the result applies for other phase pattern geometries (e.g., a hexagon with triangular phase 

cells).   

 To illustrate the above results we consider the situation when N1 = N2 = 4 case.  The 

Sylvester-type H(16) is economically displayed in Fig. 3 as a so-called batik pattern, in which a 

white cell stands for +1 and a black cell for –1.  Applying Eq. (8) yields the sixteen 4 × 4 phase 

patterns given in Fig. 4(a).  Figure 4(b) shows another valid set of phase patterns, obtained by  

reversal of the sign of the sixth column of H(16).   

 The Hadamard speckle contrast reduction was tested in the Grating Light Valve (GLV)  

laser projection display7,8.  The GLV is a one-dimensional spatial light modulator with 1080 

pixels.  One forms a two-dimensional image is formed by scanning the one-dimensional image 

across the screen while modulating the GLV with successive column information.  The speckle 

contrast measurement was standardized, so the detector-resolution spot was about one GLV pixel 

on the screen.  The maximum reduction permitted by the imaging optics’ NA and the GLV pixel 

size was M1/2 ≈ 8, which prompted the use of H(64) in a representation with sixty-four modulo 8 

cyclic phase patterns.  The diffuser was made by etching of the phase patterns in a fused-silica 

wafer by use of a single mask in standard lithography fabrication.  For a π phase-shift the etch 

depth was λ/2(n–1) = 577 nm (λ = 532 nm, n = 1.46).  The diffuser was placed at a plane 

conjugate to the GLV array and was set in transverse oscillatory motion by a voice coil.  All the 

phase patterns must be presented within the detector integration time; this was accomplished by 
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combining the scanning action and the diffuser transverse motion across the eight noncyclic 

phase patterns.  

 A CCD camera that operates in the linear regime was used to capture the speckle images.  

Each speckle image was normalized to eliminate any background contribution.  The original 

speckle contrast, shown in Fig. 5(a), was measured to be 0.70, close to the expected value of 

1/√2 from a single-spatial-mode narrow-band laser scattered off a depolarizing screen.  The 

reduced speckle contrast in Fig. 5(b) was 0.09, which is in good agreement with the calculated 

result of 0.70/8.  The original image quality was largely preserved by the diffuser.  The measured 

optical efficiency, taken as the ratio of the light power transmitted to the screen with and without 

the diffuser, was 85%.  The combination of Hadamard and other speckle contrast reduction 

methods is described in Ref. 8.  

 It is a pleasure to thank Joseph Goodman for his inspiration on the subject of speckle. 

The author’s e-mail address is trisnadi@siliconlight.com. 
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Fig.1. (a) Detector resolution spot partitioned into M = N1N2 cells, (b) phase pattern with M 

phase cells superimposed upon the resolution spot. 
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Fig. 2. Mapping from the ath row of H to the ath phase pattern. 
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Fig. 3. Batik pattern of Sylvester-type H(16). 
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−1 = exp(iπ)
+1 = exp(i0)
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Fig. 4. (a) Sixteen batik phase patterns from the Sylvester-type H(16), (b) the effect of negating 

the sixth column of H(16). 
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Fig. 5. Images and samples of intensity fluctuation of (a) the original speckle and (b) the reduced 

speckle. 
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