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▪ Unique diffractive MEMS technology
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▪ Semiconductor, electronics & optics 
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Summary

Beamforming for LiFi and FSO

Beamforming In The Fraunhofer Regime And Effects of Array Elements

Technology example: The GLV (and the PLV)

Technology available today



What is FSO? What is LiFi?

FSO = free space optical communications

LiFi = Light Fidelity
• WiFi, but light
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Why light?

Short wavelengths, narrower beams:

• 𝐵𝑒𝑎𝑚 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝜃~
𝜆

𝐷

• Short wavelengths, smaller divergence; direct light where you want to go 

• Harder to intercept narrower beams, stronger security and privacy

Increased Modulation Bandwidth:

•  Optical carrier frequencies 100s THz, (often use 1% of bandwidth)

• Compared to the MHz frequencies often used in RF communication, (often use 20% of bandwidth)

• Practical data bandwidth increase of ~100X [1]

Unlicensed Bandwidth:

• High congestion in RF requires licensing, significant costs to expanding networks

Available technology

• Fiber optics communication gives NIR framework, or there are countless VIS sources

• Research in holography, AO, microscopy, LIDAR all also benefit LiFi

Compact size, less power than RF [1]
• Save weight and power where critical, such as on satellites, airplanes

Does not cause electronic interference
• Wifi in hospitals can interfere with medical [2]
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Air France LiFi

Transceiver

Use Cases

Military – Security (~5-30m) 
• Kitefin by Purelifi - $4.2 million order from US Army 

Aviation / Aerospace – Lighter weight (~1-3m)
• One ton of wiring, or ~10 (American) passengers + carry-on worth for on-board WiFi

Factory and hospitals – No EM interference (~5-30m)
• RF interference from equipment disrupts connection, or from WiFi disrupting devices

Disaster relief – High bandwidth, channel count (~10-50m)
• Stadiums, airports, places where connection effected due to number of users

Consumer – Supplemental to WiFi, 5G, smart housing (~1-3m)
• Phone dongles and usb based transceivers available now

• Generally will be short range wireless high bandwidth bridges
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LiFi for Industry 4.0

Industry 4.0 = “smart factory”
• Machinery tied to IoT; allows remote monitoring and AI control

• Industry 1.0 = steam and water, Industry 2.0 = assembly line, Industry 3.0 = computers + automation

LiFi good fit for smart factory wireless communication
• EM interference makes WiFi unusable

• Hard wiring is inflexible and complicated

• LiFi flexible enough, while positioning of recievers can be planned for line of sight (LoS)

Beamforming is necessary for the data rates and distances of large factory 

floorplans with many devices
• LIDAR type beam steering, UV-NIR

• Transceiver modules on bases and large items can have more complicated optics than consumer 

devices, less power and cost sensitive
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Why light?

Short wavelengths, narrower beams:

• 𝑩𝒆𝒂𝒎 𝒅𝒊𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝜽~
𝝀

𝑫

• Short wavelengths, smaller divergence; direct light where you want to go 

• Harder to intercept narrower beams, stronger security and privacy

Increased Modulation Bandwidth:

•  Optical carrier frequencies 100s THz, (often use 1% of bandwidth)

• Compared to the MHz frequencies often used in RF communication, (often use 20% of bandwidth)

• Practical throughput increase of ~100X [1]

Unlicensed Bandwidth:

• High congestion in RF requires licensing, significant costs to expanding networks

Available technology

• Fiber optics communication gives NIR framework, or there are countless VIS sources

• Research in holography, AO, microscopy, LIDAR all also benefit LiFi

Compact size, less power than RF [1]
• Save weight and power where critical, such as on satellites, airplanes

Does not cause electronic interference
• Wifi in hospitals can interfere with medical [NCBI]
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Beamforming for Lifi 

Beamforming is necessary for FSO …
• … for longer range. Scanning gives orders of magnitude higher signal over equivalent FOV.

• Received power ~ (𝜃𝐿)−2

6/7/2021 9

Fine angle steering over 5 degree FOV

 (20um PLV pitch with 1.55um light)
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Beamforming for Lifi 

Beamforming is necessary for LiFi …
• … for longer range. Scanning gives orders of magnitude higher signal over equivalent FOV.

• Sung-man Kim: 3x noise-limited range and 1000x lossless transmission speeds at 4m [2]
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Beamforming for Lifi 

Beamforming is necessary for LiFi …
• … for longer range. Scanning gives orders of magnitude higher signal over equivalent FOV.

• Sung-man Kim: 3x noise-limited range and 1000x lossless transmission speeds at 4m [2]
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Beamforming for Lifi 

Beamforming is necessary for LiFi …
• … for longer range. Scanning gives orders of magnitude higher signal over equivalent FOV.

• … for privacy.  
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Beamforming Performance Evaluation

Speed: 
• Fast enough to track? To multiplex? Both?

• Point to point or continuous

• Magnitudes different speeds between 

technologies

Power:
• Mobile devices 

• Benefits outweigh power cost

Wavelength:
• VIS for lighting conditions

• NIR for invisible uplink [1] and long distance

• Coherent/incoherent

Signal: 
• Efficiency and beam quality

• Determined by pixel size, count and fill factor

• Sidelobes, grating lobes

• Determined by pixel size and fill factor

Coverage:
• Field of view

• Determined by pixel size and wavelength

• Resolution, resolvable spots

• Determined by pixel size, count, wavelength, fill 

factor and input illumination shape

Range: 
• Beam divergence

• Lensing power

• Determined by pixel size and count

• With fixed optics or not
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High Speed Random Access

High speed necessary for receiver acquisition and tracking
• .2o beam, 90o FOV, 3 us point to point -> ~150 ms max time to find stationary target

• Random access beamforming for smarter, faster acquisition [2]
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High Speed Random Access

Very high speed technologies enable time based multiplexing
• Give each time slot equally or according to need

• Kim et. Al. demonstrated SNR improvement with TDMA [3]

• Random access essential

• Signal splitting, wavelength multiplexing, multiple spot may be used alternatively or concurrently
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Mirror versus MEMS Phased Array

Phased arrays = wave optics, tilted mirrors = geometric optics?
• Wavefronts of reflected flat pixels interfere in far field to create main lobe
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Array Dimension Effects on Steering

Field of view determined by pixel size

• 𝐹𝑂𝑉 = 2 sin−1 𝜆

2𝑎

Resolution determined by aperture size and 

illumination/apodization

• Gaussian divergence of 𝜃 =
.85𝜋𝜆

𝑤

Number of spots determined by pixel channel count

• Repeating array creates phasing effects

Magnification optics increases FOV, decreases 

resolution
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Array Dimension Effects on Efficiency

Beam efficiency and grating lobes 

depends on technology
• Diffraction efficiency, grating order 

location, FOV ~ channel spacing for 

emitters [7]

• Zero order efficiency ~ fill factor for SLMs

• Zero order efficiency ~ 𝑓𝑓2 ∗ 𝑅𝑚𝑖𝑟𝑟𝑜𝑟 

• Grating orders, FOV ~ pixel size for SLMs

• Grating order location = sin−1 𝜆

𝑎

Grating orders can be filtered
• 2 lens with low-pass

Steering response has non-uniform 

power
• First orders defines max FOV, power split 

equally

• Restrict FOV further to increase system 

efficiency

6/7/2021 18Fourier simulation of 25.5um element, 85% fill factor, see [5]



Uniform (Top-hat) Illumination

Uniform illumination generally 

gives “highest” resolution but with 

significant side lobes
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Gaussian Illumination

We can engineer a better illumination to 

suppress sidelobes
• Gaussian illumination on the phased array will give a 

Gaussian response in far field

• Gaussian apodization also possible for any phased 

array [7]
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Phased Lensing

Spherical (cylindrical) lens

• Phase ~ 
𝟐𝝅

𝜆
(𝒇 ± 𝒇𝟐 − 𝒙𝟐)

• Describing hologram of a point source

• + for converging

• - for diverging

Parabolic works well too

• Phase ~
𝑥2

4𝑓
 (Fresnel lens)

Gaussian waist - change divergence angle by 40%
• Maximum focus: f = zR

• 𝑤02 =
1

2
𝑤01 

• 𝜃2 = 2 𝜃1
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Array Dimension Effects on Lensing
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Element size determines NA
• Scales linearly with wavelength

• Maximum lens power determined by aperture

• Minimum lens power determined by phase 

control depth, number of elements

Acceptable NA depends on use case
• Imaging aberrations as RMS wavefront error

• “Perfect Imaging”, RMS error = .07 waves

• LiFi is not imaging, higher RMS error okay

• Zero order efficiency decreases with NA

• .07 waves ~ 90% efficiency

[6]

𝜆 = 488𝑛𝑚 [6]



Grating Light Valve ® – High Speed Amplitude
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+V

The GLV ® is a high-speed diffractive 

MEMS light modulator fabricated from 

aluminum & silicon-nitride

The GLV ® uses phase interference to 

modulate light intensity reflected into 

fixed diffraction angles at high speeds

Originally developed for displays, now 

used in printing, lithography, and many 

other applications



Phase GLV® – High Speed Linear Phase

The conventional GLV ® for imaging 

employs interleaved static and active 

ribbons to create localized image contrast

• Maximum deflection is /4 for 1 phase shift

In the phase GLV ®, every ribbon is active, 

allowing arbitrary phase modulation of 

the reflected beam

• Maximum deflection is /2 for 2 phase shift

φ = 0 waves φ = 0.5 waves φ = 1.0 waves

24

Phase 

GLV

A A A AA A A A

Imaging
GLV

Phase
GLV

λ/2

A A A A

λ/4
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High Speed Buddy Phase Modulator

Specs of UV-VIS demo device
• 350 kHz Maximum rate

• Signal limited

• 1088, 25.5 um pixels

• 1 pixel = 6 ribbons

• 2π phase modulation up to 488nm

• 10 bit modulation

• Voltage – deflection response nonlinear

Single ribbon pixels, larger aperture in development
• NIR operation 

• 2π phase modulation >1550nm

• Small element (~28o FOV @ 1550nm)

• Multiple array for spot multiplexing

• Demo expected in the fall
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Lateral Scan Profile

Results from Hamann et. al. [5]
• 940 scan lines shown over 1o FOV

• Variation in amplitude from multiple sources

• Convolved sinc pattern from theory

• Lines straddling pixels
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Phased Array with Fixed Optics

Beam Characterization Done with Lens

Changing Lens Power of System
• 𝑥=𝑥n−Δ𝑥

• 𝑥 = distance to new focal plane

• Δ𝑥 = shift in focal plane

• 𝑥𝑛 = nominal focus of system

• ∆𝑥 =
𝑓𝑛

2

𝑓𝑃𝐴

• fn=focus of lens

• fPA=focus of phased array

Maximum focal shift limited by pixel effects
• Not Rayleigh range of Gaussian waist at the array
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Passive State (Mirror)

• Line is focused at nominal focus
• Focal length is 150mm

• Set full width half maximum (FWHM) of nominal 

plane as reference
• wo = 3.3 um (~256 pixels covered)

• Note cleaner Gaussian response, limiting aperture is not GLV
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Focus = +5000 mm

• FWHM/nom = 0.95

• Acts as a converging lens
• ∆𝑥 = −4.5𝑚𝑚

29
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Focus = -5000 mm

• FWHM/nom = 1.05

• Acts as a diverging lens
• ∆𝑥 = +4.5𝑚𝑚

30
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Focus = +250 mm

• FWHM/nom = 1.04

• Acts as a converging lens
• ∆𝑥 = −90𝑚𝑚

• Phase wrap effects
• Higher orders start to appear

• 25um grating response

• Nominal plane sharpness

31
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Full Beamforming Demonstratoin

Scan performed by adding linear and cylindrical 

phases (modulo 2π)
• f=500mm, x=115 mm

• Note FWHM widening at edges

32



Far field Scanning Demonstration

20x Magnification for ~20o FOV at 405nm
• 2 lens mag w/o filter

• Orthogonal divergence also 

  magnified
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2D High Speed Phase Modular – the PLV

Phase action through pistons
• 2D faceplate allows for high power, 

larger etendue, 2D control

Currently available, the Linear 

Planar Light Valve
• 2D aperture with 1D control

• LPLV used for high power processing

• Change of face plate possible for 

phase control
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2D Modulation Coming Soon

2D Control
• Grayscale amplitude with contrast

• Phase only

• Complex modulation 

• 4 element, double phase

method creates grayscale

amplitude with averaged

phase change

Demo module in development, expected end of year
• 100 kHz operation, 32 x 256 pixel count (8000 channels)

• ~10 um pitch possible
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Fresnel Simulation – 100mm lensing
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Fresnel Simulation – Through Focus
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Fresnel Simulation – Steering at 100mm
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Fresnel Simulation – Gaussian apodization
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Line of sight?

No, beamforming does not require line of sight anymore than non-beamforming LiFi
• Concentrate light at a location for best bounce angle

• Wavefront shaping to optimize transceiver-receiver link (demonstrated by Cao. Et. Al. [9])

Team at CU, Boulder demonstrated 1D phase GLV for focusing through scattering media [8]
• F1088-HS phase modulator is used in real time to shape wavefront; high speed with feedback absolutely necessary

• Such techniques can be used for:

• Turbulent media (clouds, fog, etc.) for long distance FSO

• Indirect relay off of scattering surface (a wall) for LiFi, as with [9]
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Scanning Mirrors and Lenses

Mechanical scanners too slow
• Steppers, etc.

• Generally high power requirements

Tunable Lenses, only lens
• ~10 Hz switch speed 

• May be useful in larger systems, with other technologies

MEMS Mirrors and Galvos steer quickly on resonance
• Galvos ~10 kpps (ILDA test), resonant mode; MEMS – 10s kHz, resonant mode

• Galvo – Thorlabs Digicube – “1000 impressions per second”, 45o FOV, 24V 4A power supply [10]

• MEMS Mirror – Hamamatsu – 102(-104) Hz, ~20-40o FOV, USB powered (<2W) [11]
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Other Established Technologies

Acousto-optic, Electro optics Deflectors
• Steering only, generally not used for point scans

• Acousto-optic: Speed ~107 Hz range, ~10-100 mrad FOV [12]

• Electro optics ~105 (steering) – 109 Hz (modulation), efficient

Deformable mirrors (Adaptive Optics)
• Piston actuators connected by deformable membrane

• Not made for beamforming, generally low pixel count with large pixels

• Boston Micromachines – 137 (100 kHz) to 4092 (15 kHz) [13]

Liquid Crystal On Silicon (Beamforming)
• High pixel counts, 102-low 103 Hz range [14], 

• Meadowlark  - 1920x1152 pixels, 9.2um with 95.7% FF, up to 422.4 Hz [15]

• Lumotive – Liquid crystal “metasurface” mobile LIDAR [16]
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MEMS Phased Array Technologies

Silicon Light Machines
• GLV – 350 kHz, VIS-NIR, 1D 1000-8000 channels, 100 uW-1 mW / channel, 10-bit phase control

• PLV – 100 kHz, VIS – NIR, 2D 8000 channels, available soon

• High speed, repeatable aperture, high quality beams

Tip-tilt phased arrays
• One or multiple actuators with both piston action and a tiltable faceplate

• Like deformable mirrors, generally low pixel counts

• Boston Micromirrors – 111 actuator, 37 segment 100 kHz -> 3063 actuator, 1021 segment, 15kHz [17]

More MEMS technology coming out
• Tip tilt and others often in academic journals

• Prof. Wu lab at Berkeley – Lateral moving gratings to produce phase shift

• 160 x 160 phased array, 19.1x20um, 175 kHz, 85% FF [18]
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On-chip photonic Technologies

Waveguide based emitter phased arrays
• Integrated for possibly low power, high channel counts, high speed, low cost

• Channel counts ~102-103, speeds (102-) 105 (-106) Hz

• VIS (SiN) – NIR (Si)

• Multiple tuning techniques for 1D or 2D control: thermal, wavelength, resonator…

Impressive in lab results
• Analog Photonics, Poulton et. Al.

• 46o x 36o FOV, .85o x .18o, thermal (1.2W) and wavelength, 1.2 x .5mm footprint, [19]

• Higher grating and sidelobes than theoretical due to phase control

• Have not started to thoroughly explore wavefront shaping

• “ Working to bring down power”

Stealth mode technologies
• Analog Photonics (Dr. Watts) – Exciting product list [20]

• Expect to see more and more OPA tech with more LIDAR startups

6/7/2021 44



Technology Depends on Use

Base needs to cover wide area, multiple devices
• High speed for tracking and multiplexing

• Higher beam quality needed for small receivers

• May have space for more complex optics, multiple transcievers

• MEMS phased arrays, galvo/MEMS scanner, OPAs

Mobile devices have different needs
• Power and space more critical

• Communicate with single device, only need high speed for aquisition 

• Base may have larger receiver -> mobile larger divergence

• On-chip OPAs, MEMS mirror, MEMS phased arrays
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Conclusion

Beamforming is needed for LiFi 2.0
• Steering gives at least ~40 dB higher signal than non-directed

• High speed random access needed for receiver finding, tracking and multiplexing

• Consumer use cases will still need non-line of sight devices

Technology for beamforming exists now
• Scanners too slow, not random access

• Older technologies ready for demonstration, but may still be too slow

• High speed photonic technology gives random access and flexibility 

• Silicon Light Machines technology 

• Demonstrated visible MEMS 1D beamforming, NIR and 2D demonstrations later this year

• 100s kHz range, small elements, large apertures, high power capabilities

• Long range transmission with narrow, high-quality beams with flexibility of full phase modulation
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